home *** CD-ROM | disk | FTP | other *** search
- /*
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that this notice is preserved and that due credit is given
- * to the University of California at Berkeley. The name of the University
- * may not be used to endorse or promote products derived from this
- * software without specific prior written permission. This software
- * is provided ``as is'' without express or implied warranty.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- */
-
- #ifndef lint
- static char sccsid[] = "@(#)pow.c 5.2 (Berkeley) 4/29/88";
- #endif /* not lint */
-
- /* POW(X,Y)
- * RETURN X**Y
- * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
- * CODED IN C BY K.C. NG, 1/8/85;
- * REVISED BY K.C. NG on 7/10/85.
- *
- * Required system supported functions:
- * scalb(x,n)
- * logb(x)
- * copysign(x,y)
- * finite(x)
- * drem(x,y)
- *
- * Required kernel functions:
- * exp__E(a,c) ...return exp(a+c) - 1 - a*a/2
- * log__L(x) ...return (log(1+x) - 2s)/s, s=x/(2+x)
- * pow_p(x,y) ...return +(anything)**(finite non zero)
- *
- * Method
- * 1. Compute and return log(x) in three pieces:
- * log(x) = n*ln2 + hi + lo,
- * where n is an integer.
- * 2. Perform y*log(x) by simulating muti-precision arithmetic and
- * return the answer in three pieces:
- * y*log(x) = m*ln2 + hi + lo,
- * where m is an integer.
- * 3. Return x**y = exp(y*log(x))
- * = 2^m * ( exp(hi+lo) ).
- *
- * Special cases:
- * (anything) ** 0 is 1 ;
- * (anything) ** 1 is itself;
- * (anything) ** NaN is NaN;
- * NaN ** (anything except 0) is NaN;
- * +-(anything > 1) ** +INF is +INF;
- * +-(anything > 1) ** -INF is +0;
- * +-(anything < 1) ** +INF is +0;
- * +-(anything < 1) ** -INF is +INF;
- * +-1 ** +-INF is NaN and signal INVALID;
- * +0 ** +(anything except 0, NaN) is +0;
- * -0 ** +(anything except 0, NaN, odd integer) is +0;
- * +0 ** -(anything except 0, NaN) is +INF and signal DIV-BY-ZERO;
- * -0 ** -(anything except 0, NaN, odd integer) is +INF with signal;
- * -0 ** (odd integer) = -( +0 ** (odd integer) );
- * +INF ** +(anything except 0,NaN) is +INF;
- * +INF ** -(anything except 0,NaN) is +0;
- * -INF ** (odd integer) = -( +INF ** (odd integer) );
- * -INF ** (even integer) = ( +INF ** (even integer) );
- * -INF ** -(anything except integer,NaN) is NaN with signal;
- * -(x=anything) ** (k=integer) is (-1)**k * (x ** k);
- * -(anything except 0) ** (non-integer) is NaN with signal;
- *
- * Accuracy:
- * pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
- * and a Zilog Z8000,
- * pow(integer,integer)
- * always returns the correct integer provided it is representable.
- * In a test run with 100,000 random arguments with 0 < x, y < 20.0
- * on a VAX, the maximum observed error was 1.79 ulps (units in the
- * last place).
- *
- * Constants :
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- */
-
- #if defined(vax)||defined(tahoe) /* VAX D format */
- #include <errno.h>
- extern double infnan();
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
- /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
- /* invln2 = 1.4426950408889634148E0 , Hex 2^ 1 * .B8AA3B295C17F1 */
- /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */
- static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
- static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
- static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
- static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
- #define ln2hi (*(double*)ln2hix)
- #define ln2lo (*(double*)ln2lox)
- #define invln2 (*(double*)invln2x)
- #define sqrt2 (*(double*)sqrt2x)
- #else /* defined(vax)||defined(tahoe) */
- static double
- ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
- ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
- invln2 = 1.4426950408889633870E0 , /*Hex 2^ 0 * 1.71547652B82FE */
- sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */
- #endif /* defined(vax)||defined(tahoe) */
-
- static double zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0;
-
- double pow(x,y)
- double x,y;
- {
- double drem(),pow_p(),copysign(),t;
- int finite();
-
- if (y==zero) return(one);
- else if(y==one
- #if !defined(vax)&&!defined(tahoe)
- ||x!=x
- #endif /* !defined(vax)&&!defined(tahoe) */
- ) return( x ); /* if x is NaN or y=1 */
- #if !defined(vax)&&!defined(tahoe)
- else if(y!=y) return( y ); /* if y is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
- else if(!finite(y)) /* if y is INF */
- if((t=copysign(x,one))==one) return(zero/zero);
- else if(t>one) return((y>zero)?y:zero);
- else return((y<zero)?-y:zero);
- else if(y==two) return(x*x);
- else if(y==negone) return(one/x);
-
- /* sign(x) = 1 */
- else if(copysign(one,x)==one) return(pow_p(x,y));
-
- /* sign(x)= -1 */
- /* if y is an even integer */
- else if ( (t=drem(y,two)) == zero) return( pow_p(-x,y) );
-
- /* if y is an odd integer */
- else if (copysign(t,one) == one) return( -pow_p(-x,y) );
-
- /* Henceforth y is not an integer */
- else if(x==zero) /* x is -0 */
- return((y>zero)?-x:one/(-x));
- else { /* return NaN */
- #if defined(vax)||defined(tahoe)
- return (infnan(EDOM)); /* NaN */
- #else /* defined(vax)||defined(tahoe) */
- return(zero/zero);
- #endif /* defined(vax)||defined(tahoe) */
- }
- }
-
- /* pow_p(x,y) return x**y for x with sign=1 and finite y */
- static double pow_p(x,y)
- double x,y;
- {
- double logb(),scalb(),copysign(),log__L(),exp__E();
- double c,s,t,z,tx,ty;
- #ifdef tahoe
- double tahoe_tmp;
- #endif /* tahoe */
- float sx,sy;
- long k=0;
- int n,m;
-
- if(x==zero||!finite(x)) { /* if x is +INF or +0 */
- #if defined(vax)||defined(tahoe)
- return((y>zero)?x:infnan(ERANGE)); /* if y<zero, return +INF */
- #else /* defined(vax)||defined(tahoe) */
- return((y>zero)?x:one/x);
- #endif /* defined(vax)||defined(tahoe) */
- }
- if(x==1.0) return(x); /* if x=1.0, return 1 since y is finite */
-
- /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */
- z=scalb(x,-(n=logb(x)));
- #if !defined(vax)&&!defined(tahoe) /* IEEE double; subnormal number */
- if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);}
- #endif /* !defined(vax)&&!defined(tahoe) */
- if(z >= sqrt2 ) {n += 1; z *= half;} z -= one ;
-
- /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */
- s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s));
- t= z-(c-tx); tx += (z-t)-c;
-
- /* if y*log(x) is neither too big nor too small */
- if((s=logb(y)+logb(n+t)) < 12.0)
- if(s>-60.0) {
-
- /* compute y*log(x) ~ mlog2 + t + c */
- s=y*(n+invln2*t);
- m=s+copysign(half,s); /* m := nint(y*log(x)) */
- k=y;
- if((double)k==y) { /* if y is an integer */
- k = m-k*n;
- sx=t; tx+=(t-sx); }
- else { /* if y is not an integer */
- k =m;
- tx+=n*ln2lo;
- sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; }
- /* end of checking whether k==y */
-
- sy=y; ty=y-sy; /* y ~ sy + ty */
- #ifdef tahoe
- s = (tahoe_tmp = sx)*sy-k*ln2hi;
- #else /* tahoe */
- s=(double)sx*sy-k*ln2hi; /* (sy+ty)*(sx+tx)-kln2 */
- #endif /* tahoe */
- z=(tx*ty-k*ln2lo);
- tx=tx*sy; ty=sx*ty;
- t=ty+z; t+=tx; t+=s;
- c= -((((t-s)-tx)-ty)-z);
-
- /* return exp(y*log(x)) */
- t += exp__E(t,c); return(scalb(one+t,m));
- }
- /* end of if log(y*log(x)) > -60.0 */
-
- else
- /* exp(+- tiny) = 1 with inexact flag */
- {ln2hi+ln2lo; return(one);}
- else if(copysign(one,y)*(n+invln2*t) <zero)
- /* exp(-(big#)) underflows to zero */
- return(scalb(one,-5000));
- else
- /* exp(+(big#)) overflows to INF */
- return(scalb(one, 5000));
-
- }
-